1 /* crc32.c -- compute the CRC-32 of a data stream
2 * Copyright (C) 1995-2006, 2010, 2011, 2012 Mark Adler
3 * For conditions of distribution and use, see copyright notice in zlib.h
5 * Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster
6 * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing
7 * tables for updating the shift register in one step with three exclusive-ors
8 * instead of four steps with four exclusive-ors. This results in about a
9 * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3.
15 Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore
16 protection on the static variables used to control the first-use generation
17 of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should
18 first call get_crc_table() to initialize the tables before allowing more than
19 one thread to use crc32().
21 DYNAMIC_CRC_TABLE and MAKECRCH can be #defined to write out crc32.h.
26 # ifndef DYNAMIC_CRC_TABLE
27 # define DYNAMIC_CRC_TABLE
28 # endif /* !DYNAMIC_CRC_TABLE */
31 #include "zutil.h" /* for STDC and FAR definitions */
35 /* Definitions for doing the crc four data bytes at a time. */
36 #if !defined(NOBYFOUR) && defined(Z_U4)
40 local unsigned long crc32_little OF((unsigned long,
41 const unsigned char FAR *, unsigned));
42 local unsigned long crc32_big OF((unsigned long,
43 const unsigned char FAR *, unsigned));
49 /* Local functions for crc concatenation */
50 local unsigned long gf2_matrix_times OF((unsigned long *mat,
52 local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat));
53 local uLong crc32_combine_ OF((uLong crc1, uLong crc2, z_off64_t len2));
56 #ifdef DYNAMIC_CRC_TABLE
58 local volatile int crc_table_empty = 1;
59 local z_crc_t FAR crc_table[TBLS][256];
60 local void make_crc_table OF((void));
62 local void write_table OF((FILE *, const z_crc_t FAR *));
65 Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
66 x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.
68 Polynomials over GF(2) are represented in binary, one bit per coefficient,
69 with the lowest powers in the most significant bit. Then adding polynomials
70 is just exclusive-or, and multiplying a polynomial by x is a right shift by
71 one. If we call the above polynomial p, and represent a byte as the
72 polynomial q, also with the lowest power in the most significant bit (so the
73 byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p,
74 where a mod b means the remainder after dividing a by b.
76 This calculation is done using the shift-register method of multiplying and
77 taking the remainder. The register is initialized to zero, and for each
78 incoming bit, x^32 is added mod p to the register if the bit is a one (where
79 x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by
80 x (which is shifting right by one and adding x^32 mod p if the bit shifted
81 out is a one). We start with the highest power (least significant bit) of
82 q and repeat for all eight bits of q.
84 The first table is simply the CRC of all possible eight bit values. This is
85 all the information needed to generate CRCs on data a byte at a time for all
86 combinations of CRC register values and incoming bytes. The remaining tables
87 allow for word-at-a-time CRC calculation for both big-endian and little-
88 endian machines, where a word is four bytes.
90 local void make_crc_table()
94 z_crc_t poly; /* polynomial exclusive-or pattern */
95 /* terms of polynomial defining this crc (except x^32): */
96 static volatile int first = 1; /* flag to limit concurrent making */
97 static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26};
99 /* See if another task is already doing this (not thread-safe, but better
100 than nothing -- significantly reduces duration of vulnerability in
101 case the advice about DYNAMIC_CRC_TABLE is ignored) */
105 /* make exclusive-or pattern from polynomial (0xedb88320UL) */
107 for (n = 0; n < (int)(sizeof(p)/sizeof(unsigned char)); n++)
108 poly |= (z_crc_t)1 << (31 - p[n]);
110 /* generate a crc for every 8-bit value */
111 for (n = 0; n < 256; n++) {
113 for (k = 0; k < 8; k++)
114 c = c & 1 ? poly ^ (c >> 1) : c >> 1;
119 /* generate crc for each value followed by one, two, and three zeros,
120 and then the byte reversal of those as well as the first table */
121 for (n = 0; n < 256; n++) {
123 crc_table[4][n] = ZSWAP32(c);
124 for (k = 1; k < 4; k++) {
125 c = crc_table[0][c & 0xff] ^ (c >> 8);
127 crc_table[k + 4][n] = ZSWAP32(c);
134 else { /* not first */
135 /* wait for the other guy to finish (not efficient, but rare) */
136 while (crc_table_empty)
141 /* write out CRC tables to crc32.h */
145 out = fopen("crc32.h", "w");
146 if (out == NULL) return;
147 fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n");
148 fprintf(out, " * Generated automatically by crc32.c\n */\n\n");
149 fprintf(out, "local const z_crc_t FAR ");
150 fprintf(out, "crc_table[TBLS][256] =\n{\n {\n");
151 write_table(out, crc_table[0]);
153 fprintf(out, "#ifdef BYFOUR\n");
154 for (k = 1; k < 8; k++) {
155 fprintf(out, " },\n {\n");
156 write_table(out, crc_table[k]);
158 fprintf(out, "#endif\n");
160 fprintf(out, " }\n};\n");
163 #endif /* MAKECRCH */
167 local void write_table(out, table)
169 const z_crc_t FAR *table;
173 for (n = 0; n < 256; n++)
174 fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : " ",
175 (unsigned long)(table[n]),
176 n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", "));
178 #endif /* MAKECRCH */
180 #else /* !DYNAMIC_CRC_TABLE */
181 /* ========================================================================
182 * Tables of CRC-32s of all single-byte values, made by make_crc_table().
185 #endif /* DYNAMIC_CRC_TABLE */
187 /* =========================================================================
188 * This function can be used by asm versions of crc32()
190 const z_crc_t FAR * ZEXPORT get_crc_table()
192 #ifdef DYNAMIC_CRC_TABLE
195 #endif /* DYNAMIC_CRC_TABLE */
196 return (const z_crc_t FAR *)crc_table;
199 /* ========================================================================= */
200 #define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8)
201 #define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1
203 /* ========================================================================= */
204 unsigned long ZEXPORT crc32(crc, buf, len)
206 const unsigned char FAR *buf;
209 if (buf == Z_NULL) return 0UL;
211 #ifdef DYNAMIC_CRC_TABLE
214 #endif /* DYNAMIC_CRC_TABLE */
217 if (sizeof(void *) == sizeof(ptrdiff_t)) {
221 if (*((unsigned char *)(&endian)))
222 return crc32_little(crc, buf, len);
224 return crc32_big(crc, buf, len);
227 crc = crc ^ 0xffffffffUL;
235 return crc ^ 0xffffffffUL;
240 /* ========================================================================= */
241 #define DOLIT4 c ^= *buf4++; \
242 c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \
243 crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24]
244 #define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4
246 /* ========================================================================= */
247 local unsigned long crc32_little(crc, buf, len)
249 const unsigned char FAR *buf;
253 register const z_crc_t FAR *buf4;
257 while (len && ((ptrdiff_t)buf & 3)) {
258 c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
262 buf4 = (const z_crc_t FAR *)(const void FAR *)buf;
271 buf = (const unsigned char FAR *)buf4;
274 c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
277 return (unsigned long)c;
280 /* ========================================================================= */
281 #define DOBIG4 c ^= *++buf4; \
282 c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \
283 crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24]
284 #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4
286 /* ========================================================================= */
287 local unsigned long crc32_big(crc, buf, len)
289 const unsigned char FAR *buf;
293 register const z_crc_t FAR *buf4;
295 c = ZSWAP32((z_crc_t)crc);
297 while (len && ((ptrdiff_t)buf & 3)) {
298 c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
302 buf4 = (const z_crc_t FAR *)(const void FAR *)buf;
313 buf = (const unsigned char FAR *)buf4;
316 c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
319 return (unsigned long)(ZSWAP32(c));
324 #define GF2_DIM 32 /* dimension of GF(2) vectors (length of CRC) */
326 /* ========================================================================= */
327 local unsigned long gf2_matrix_times(mat, vec)
343 /* ========================================================================= */
344 local void gf2_matrix_square(square, mat)
345 unsigned long *square;
350 for (n = 0; n < GF2_DIM; n++)
351 square[n] = gf2_matrix_times(mat, mat[n]);
354 /* ========================================================================= */
355 local uLong crc32_combine_(crc1, crc2, len2)
362 unsigned long even[GF2_DIM]; /* even-power-of-two zeros operator */
363 unsigned long odd[GF2_DIM]; /* odd-power-of-two zeros operator */
365 /* degenerate case (also disallow negative lengths) */
369 /* put operator for one zero bit in odd */
370 odd[0] = 0xedb88320UL; /* CRC-32 polynomial */
372 for (n = 1; n < GF2_DIM; n++) {
377 /* put operator for two zero bits in even */
378 gf2_matrix_square(even, odd);
380 /* put operator for four zero bits in odd */
381 gf2_matrix_square(odd, even);
383 /* apply len2 zeros to crc1 (first square will put the operator for one
384 zero byte, eight zero bits, in even) */
386 /* apply zeros operator for this bit of len2 */
387 gf2_matrix_square(even, odd);
389 crc1 = gf2_matrix_times(even, crc1);
392 /* if no more bits set, then done */
396 /* another iteration of the loop with odd and even swapped */
397 gf2_matrix_square(odd, even);
399 crc1 = gf2_matrix_times(odd, crc1);
402 /* if no more bits set, then done */
405 /* return combined crc */
410 /* ========================================================================= */
411 uLong ZEXPORT crc32_combine(crc1, crc2, len2)
416 return crc32_combine_(crc1, crc2, len2);
419 uLong ZEXPORT crc32_combine64(crc1, crc2, len2)
424 return crc32_combine_(crc1, crc2, len2);